class WrapperEstimateFn extends AdaptivePatternEstimateFn with WrapperInputLayers[AdaptivePatternEstimateFn] with WrapperInputOptPartitioner[AdaptivePatternEstimateFn]
- Alphabetic
- By Inheritance
- WrapperEstimateFn
- WrapperInputOptPartitioner
- WrapperInputLayers
- Wrapper
- AdaptivePatternEstimateFn
- Serializable
- Serializable
- InputOptPartitioner
- InputLayers
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
- new WrapperEstimateFn(impl: AdaptivePatternEstimateFn)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(o: Any): Boolean
- Definition Classes
- Wrapper → AnyRef → Any
-
def
estimateFn(src: (InKey, InMeta)): Iterable[(HereTile, Long)]
Estimate the weights of zero, one or more output HereTiles
Estimate the weights of zero, one or more output HereTiles
- src
Input key and metadata, it can be used to retrieve the data with a com.here.platform.data.processing.blobstore.Retriever, although this method is not suggested.
- returns
Output HereTiles with their estimated weights. Weights must be positive.
- Definition Classes
- WrapperEstimateFn → AdaptivePatternEstimateFn
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- Wrapper → AnyRef → Any
-
val
impl: AdaptivePatternEstimateFn
- Definition Classes
- WrapperEstimateFn → Wrapper
-
def
inLayers: Map[Id, Set[Id]]
Represents layers of the input catalogs that you should query and provide to the compiler.
Represents layers of the input catalogs that you should query and provide to the compiler. These layers are grouped by input catalog and identified by catalog ID and layer ID.
- Definition Classes
- WrapperInputLayers → InputLayers
-
def
inPartitioner(parallelism: Int): Option[Partitioner[InKey]]
Specifies the partitioner to use when querying the input catalogs.
Specifies the partitioner to use when querying the input catalogs. If no partitioner is provided, by returning None from this function, then the Executor uses the default partitioner.
- parallelism
The number of partitions the partitioner should partition the catalog into, this should match the parallelism of the Spark RDD containing the input partitions.
- returns
The optional input partitioner with the parallelism specified.
- Definition Classes
- WrapperInputOptPartitioner → InputOptPartitioner
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Wrapper → AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()