Packages

trait CompileInFn[T] extends Serializable

This interface requires the implementation of two methods, one providing the mapping of the output partitions in terms of input partitions, and the second to preprocess the input partitions to an intermediate data format.

The mapping entries are collected and provided to CompileOutFn.

T

the custom type of the values passed to the back-end

Note

The implementation must be scala.Serializable as this is copied to workers and run inside Spark map functions.

,

This is a Java friendly version of com.here.platform.data.processing.compiler.direct.CompileInFn.

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CompileInFn
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def compileInFn(in: Java.Pair[InKey, InMeta]): T

    Calculates the intermediate result from a single input partition.

    Calculates the intermediate result from a single input partition. The result will be provided together with the input key in the CompileOutFn.

    in

    the input partition to process

    returns

    the value of intermediate data of type T for this partition. This value will be passed in CompileOutFn to all output keys impacted by the in partition.

  2. abstract def mappingFn(inKey: InKey): Iterable[OutKey]

    Calculates which output partitions, if any, are affected by the given single input partition.

    Calculates which output partitions, if any, are affected by the given single input partition. The mapping must be function of only the input InKey.

    The metadata is intentionally not provided, because the result of this call cannot be function of the metadata and therefore the data. This is because the direct.CompileInFn implementation does not perform a stateful dependency-tracking for incremental compilation. If the function would use additional information from the tile content, it would break incremental compilation use case.

    inKey

    the input partition being mapped

    returns

    the output partitions that the given input partition maps to

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  16. def toString(): String
    Definition Classes
    AnyRef → Any
  17. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  18. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped