object Solver

Finds the most likely path through a Map-Matching specific Hidden Markov Model.

The solver finds the most probable sequence of states, given the provided states and transitions without filtering states or transitions.

Note

In case of numerical difficulties the solution is undefined.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Solver
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. type StateIndex = Int

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. def solve(states: IndexedSeq[LogProbabilitySeq], transitions: IndexedSeq[LogProbabilityMatrix]): Seq[StateIndex]

    Find the most likely path through a Hidden Markov Model.

    Find the most likely path through a Hidden Markov Model.

    states

    the model's states, where states(i)(j) is candidate j for measurement i.

    transitions

    the model's transitions, where transitions(i)(j)(k) is the transition from states(i)(j) to states(i+1)(k).

  16. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  17. def toString(): String
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from AnyRef

Inherited from Any

Ungrouped